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Abstract—Recent advances in multi-unmanned aerial vehicle
(UAV) based federated learning do not take into consideration
the massive computational requirements of modern deep learning
models on mobile UAVs. Additionally, there has been significant
progress that shows that the information transmitted between the
federated agent and the central hub can be attacked to undermine
the privacy of the data. We propose a novel multi-UAV-based
federated transfer learning system that drastically reduces the
computational burden overall, shifts it from UAVs to the ground
fusion center, and reduces the bandwidth requirements while
enhancing its secure nature. The proposed system makes multi-
UAV learning significantly fast, reliable, power efficient, and
practically feasible. Furthermore, we provide simulation and
experimental results to demonstrate the effectiveness of the
proposed system.

Index Terms—Deep learning, federated learning, image classi-
fication, transfer learning, unmanned aerial vehicle.

I. INTRODUCTION

Recent developments in applied federated learning have
proposed systems that use multiple unmanned aerial vehicles
(UAVs) which are equipped with a sensor for data collection,
for example, a camera, and onboard computers to process this
data. After the data is processed, it is transmitted to a ground
fusion center (GFC) for further processing. In the case of
federated learning, there is also a re-transmission of data back
to the UAVs from the GFC thereafter. Such systems have vast
practical applications such as aerial surveying, particularly for
military and civil uses [1], [2].

The seminal works on federated learning [3] proposed a
purely theoretical model for decentralized machine learning.
It addressed critical issues concerning machine learning and
the usage of gathered data, such as data privacy, data security,
and access rights. Further work on bringing federated learning
to multi-UAV networks focused on adapting the same system
as initially proposed to a multi-UAV system, which needs to
transmit data wirelessly [1]. However, this adaptation may not
be well optimized for wireless communication networks due to
the large model sizes of state-of-the-art deep learning networks
[4].

Transfer learning [5] is a machine learning technique that re-
uses knowledge from a task to boost performance on a similar
task, typically in the same domain. With the open availabil-
ity of high-quality trained deep learning model weights [6],
transfer learning has been used widely in the machine learning

community both in academia and industry [7] for tasks ranging
from image classification [8] to natural language generation
[9]. The key benefit of using transfer learning is that it saves
vast amounts of computation by initializing the neural network
weights to values that can be adapted to local data after some
training. Such data is not used (and not available) during the
initial training (e.g., private medical image data) but is from a
similar domain (i.e., a similar class of images). In this way, one
can re-use knowledge learned from large-scale public datasets,
such as ImageNet [10] or LAION-5B [11], which require train-
ing on extremely expensive, often widely inaccessible compute
infrastructure. The model’s weights (henceforth weights shall
refer to the weights and biases of neural networks) are openly
available on the internet [6], [12]. Since such models and their
weights are typically optimized for the objective task (in our
case, image classification), much of the model does not need
to be modified.

A. Related works

In [1], the authors propose a federated learning-based ap-
proach in multi-UAV networks where multiple UAVs can
communicate with a GFC. The system collects data from
onboard sensors, performs local updates, and aggregates the
weights at the GFC, which transmits the aggregate weights
back to each UAV. This loop is repeated until satisfactory
model performance is achieved. The proposed work adapts this
system but crucially reduces the computations involved and the
amount of data that needs to be transmitted. It also shifts the
compute-heavy workload to the GFC, making it possible for
UAVs to be power efficient. Transfer learning was proposed
as a consequence of observations in the similarity of features
learned by neural networks in similar tasks across moderately
diverse domains of data [5]. By relaxing the requirement of
the training data being independent and identically distributed
(i.i.d.) with the test data, transfer learning allows models to
adapt to a domain even with relatively insufficient data to train
large models [7]. This has two important effects, as described
below, which are exploited in the proposed work.

• The model weights can be initialized from pre-trained
models. Thus, we avoid having to perform vast amounts
of computation on large-scale datasets.



• The weights used to initialize the model may be frozen
and still perform favorably. They may even make the
model more generalizable, i.e., less prone to overfitting.

While there are different specific approaches to applying
transfer learning for different tasks, for the sake of simplicity,
we freeze most weights of the model as initialized from pre-
trained weights, only training the network head (output layers
of the model). This results in a simple, low-compute, and
communication-efficient model for learning.

B. Contributions

While UAVs are an emerging technology finding appli-
cations in real-time federated learning, it is important to
understand that the cost can limit the number of UAVs being
used. Further, since these UAVs do not have direct access to
unlimited power, it is crucial that all the processing onboard
is as power-efficient as possible. On the other hand, it is likely
in realistic scenarios, that GFCs will have a relatively larger
power supply since the GFC is a critical and central equipment
which is storing and aggregating crucial learning information
from the UAVs. Providing a greater power supply to a central
entity than all the UAVs also makes the system more scalable,
feasible, and cost-efficient to implement. Additionally, any
modifications to such a system that reduce the amount of data
required to be transmitted would clearly benefit the system.

With these objectives in mind, we summarize the contribu-
tions of our work as follows.

• We propose a multi-UAV-based federated transfer learn-
ing system for performing image classification, a bench-
mark for machine learning and other broad applications.
In the proposed system, multiple UAVs coordinate with
a GFC to communicate cooperatively to optimize data
delivery forming a multi-UAV network. Each UAV is
equipped with a computing-caching-communication de-
vice and a camera to collect ground images.

• We propose a method for adapting transfer learning to
a federated learning-based multi-UAV system. We show
that the nature of the proposed method naturally results
in a significantly large reduction of computation, con-
vergence time, communication, and power required. This
makes it more suitable than traditional federated learning
for multi-UAV networks.

• The proposed method eliminates the possibility of mem-
ber inference attacks [13], which can be used to infer
input data and violate the inherent privacy benefits of
federated learning.

The remainder of the paper is organized as follows. Section
II describes the system model and the proposed multi-UAV
federated transfer learning-based algorithm. The simulation
and results are presented in Section III, and finally, Section
IV concludes the paper.

II. MULTI-UAV COMMUNICATION SYSTEM

In the following subsections, we describe the multi-UAV
communication system model and the proposed federated

transfer learning model for improved UAV-to-GFC commu-
nication.

A. System Model

The considered multi-UAV communication system model is
derived from [1]. The channel during a single transmission is
assumed to be time-invariant. The channel between UAV and
GFC is modeled by the air-to-ground (A2G) channel mode
[14]. The A2G channel operates in line-of-sight (LoS) mode
with probability expressed as

pLoS =

{
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(1)
where ρ1 and ρ2 are constants that characterize the environ-
ment (rural, urban, dense urban, or others), d is the distance
between the UAV and the GFC, HB is the building height
in meters which follows the Rayleigh distribution and is
expressed as [14]
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where γ is an environment-dependent parameter. The non-LoS
(NLoS) probability is expressed as pNLoS = 1 − pLoS . The
channel gain between the uth UAV and the GFC at time instant
t is expressed as

gu(t) =

(
4πfc
c

)−2

(du(t))
−η[pLoSµLoS + pNLoSµNLoS ]

−1,

(3)
where fc denotes the carrier frequency, c denotes the speed
of light, du(t) denotes the distance between the uth UAV and
the GFC at time instant t, η is the path loss exponent, and
µLoS and µNLoS denote the attenuation factors of the LoS
and NLoS links, respectively. The discrete-time narrowband
complex channel gain of the communication link between the
uth UAV and the GFC at time t is expressed as [15], [16]

hu(t) =

Np−1∑
n=0

√
gu,n(t) exp(−jϕu,n(t)) , (4)

where Np denotes the total number of multipath compo-
nents, gu,n(t) denotes the power gain of the nth multipath
component, as given by (3), and ϕn(t) denotes the phase at
time instant t of the nth multipath component. The complex
baseband symbols received at the GFC, therefore, are given as

r =

U∑
u=1

hu xu + n , (5)

where xu denotes the transmitted symbol, hu is the sampled
channel gain of the link between the uth UAV and the GFC,
and n ∼ CN(0, σ2

n) denotes the complex additive white
Gaussian noise (AWGN), with noise variance σ2

n.



Fig. 1. Typical transfer learning model with frozen weights.

B. Transfer learning

Transfer learning is a technique wherein a portion of the
weights of a large deep learning model obtained by training
on a very large scale (often public) dataset is used to bootstrap
(i.e., initialize) the weights of local models as depicted in Fig.1.
The layers thus initialized, called the backbone, are frozen
i.e., only used during the forward pass and left untouched
during the backpropagation step of model training. Typically,
the head (i.e., a few layers at the end of the inference
pipeline in a model) is trainable. This prevents excess massive
computations of the backpropagation of the whole network.
Thus, the model utilizes the learned weights i.e., information
from a similar but public dataset and adapts or transfers by
fine-tuning to the local (often private) dataset. This is possible
because of the similarities in the domain of the public and
private datasets. This has been shown to be effective for fine-
tuning models on low-resource systems, maintaining model
stability and fast model convergence.

C. Federated learning

Federated learning in multi-UAV systems involves four
steps, as detailed below.

1) The data collected by the UAV undergoes a training step
on the UAV, using the locally available weights.

2) The weights obtained after the local backpropagation are
transmitted to the GFC.

3) The weights are aggregated at the GFC.
4) These weights are re-transmitted to the UAV, and they

overwrite the local weights of all the UAVs.
In these steps, the first step is the most computationally
intensive, the third is the least computationally intensive, and
the second and fourth are communication intensive. It is
important to understand that typical UAVs are likely to have
low onboard power because they use power storage as a power
source. However, the GFC is likely to be situated in a secure
location and will have better access to continuous and abundant
power. It logically follows that any modifications that transfer
the computational load from the UAV to a GFC will improve
the feasibility of the model. It can further reduce the cost of
the UAVs, as they would require significantly less power for
computation and simpler computing systems onboard. Another
important motivation for federated learning is the increased
privacy in processing the data since only the model weights are
transmitted to the GFC and not the image data itself. However,

Fig. 2. Federated transfer learning with UAVs.

Algorithm 1: Multi-UAV federated transfer learning.
U UAVs are indexed by u, B is local batch size

1 Local Processing
2 Inputs: Images xi,u

3 Outputs: Image features fi,u and image labels yi,u
4 for u← 1 to U do
5 for i← 1 to B do
6 compute features fi,u for images xi,u, and

aggregate them in tensor f ′
u

7 store the feature with the corresponding
label yi,u

8 Single upstream data transmission
9 Inputs: Agrregated feature tensors f ′

u and ground
truth labels yu

10 Outputs: Transmitted feature vectors Fu and y∗u
11 for u← 1 to n do
12 Transmit f ′

u and yu from UAV u to GFC

13 Fu =
ĥ∗
uĥu

|ĥ2
u|

f ′
u

14 y∗u =
ĥ∗
uĥu

|ĥ2
u|

yu

15 GFC aggregation
16 Inputs: Fu, y∗u at GFC
17 Output: Updated weights of deep learning model
18 Update model head by backpropagation.

the possibility of membership inference attacks [13] may lead
to a breach of data privacy. By using only very high-level
feature vectors, the proposed technique makes it impossible
to infer which input data was used to train the model, thus
enhancing the privacy of the model.



D. Federated Transfer learning

We combine aspects of both federated learning and transfer
learning to propose a federated transfer learning model, as
depicted in Fig.2. This process involves the following steps.

• The data collected by the UAV undergoes only the for-
ward pass through the neural network layers initialized
with the pre-trained weights. The output of this step is a
set of features.

• The features and the labels of the data are transmitted to
the GFC.

• The features and labels are used to train only the trainable
layers of the model on the GFC.

These steps modify and improve the federated learning system
in the following ways. Firstly, the UAVs only perform a for-
ward pass of the network. In the next step, it is to be noted that
we transfer the features along with the labels. The proposed
model transmits labels and features (which are compressed
representations of the local data), and this information would
not be adequate to violate the privacy of the data. In fact, the
transmission of only features may help improve the privacy and
security of the proposed model, for example, by preventing
potential membership inference attacks [13]. Since features
and labels are vastly smaller in comparison to model weights,
this step reduces the transmission burden. In the final step,
we train the final layers using the features and labels centrally
on the GFC. While this increases the computational burden
on the GFC, it is still far lower than performing the training
step on the entire network. We have not included a back-
transfer of weights from GFC to the UAVs. This is because
the processing on UAVs in the first step only uses the same
set of initially loaded pre-trained weights. Hence, the proposed
learning model reduces the computational burden, shifts it from
the UAVs to the GFC, and reduces the communication burden.
The data processing, transmission, and aggregation scheme is
described by Algorithm1.

III. SIMULATION AND RESULTS

We use the PyTorch [17] library for both the deep learning
model training as well as communication systems simulation,
allowing us to perform all the operations on a GPU or a CPU
without moving around the data between devices. In all our
experiments, we use an Nvidia RTX A5000 to simulate the
communication system and train the deep learning model. We
use two state-of-the-art deep-learning image classifiers:

• Vision Transformer [18] (variant ViT_B_16)
• ResNet50 [19].

We have chosen to demonstrate our method with these two
models, the first being a more recent vision transformer and
the second being a standard convolutional neural network
(CNN), which has been used to benchmark various com-
puter vision tasks. These are models with openly available
weights pre-trained on 1000 classes of the ImageNet [10]
dataset (Imagenet1k), accessed from torchvision [6].
For transfer learning, we freeze the backbone, leaving only
the head trainable. The simulations are performed using the
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Fig. 3. Validation accuracy versus the communication rounds with varying
batch size.
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Fig. 4. Validation accuracy versus the communication rounds with varying
number of UAVs.

CIFAR-100 dataset [20] with a learning rate of 0.0001
and a batch size of 8. This dataset has 100 classes and is
typically more challenging than MNIST-10, Fashion-MNIST,
and CIFAR-10 datasets due to its use of color images and
100 classes. We show the results of training by varying these
parameters in the form of the Top-1 accuracy measured on
the validation dataset. Further, we use ρ1 = 4.88, ρ2 = 0.43,
γ = 20 (assuming a dense urban environment) [1], fc = 2.4
GHz, η = 2.2, µLoS = 0.1, and µNLoS = 21. We show
the training results in different scenarios, which outline the
nature of the proposed system under different training and
transmission parameters.

Fig.3 gives a plot of the validation accuracy with commu-
nication rounds with a variation in the batch size. It can be
observed that on increasing batch size on each UAV, the model
attains higher accuracy after fewer transmissions.
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Fig. 5. Validation accuracy versus the communication rounds with the
variation of the error magnitude in the communication channel.

Fig.4 shows the variation of the validation accuracy with
communication rounds with different numbers of UAVs. It can
be observed that on increasing the number of UAVs, the model
attains higher accuracy after fewer transmissions.

Fig.5 gives the plot of the validation accuracy with commu-
nication rounds with the variation of the magnitude of the error
in the communication channel. We see that on increasing the
magnitude of the error term up to 10−2, the model converges.
Beyond this, the model fails to converge to a high accuracy
due to the errors becoming significant.

TABLE I
TIME TAKEN PER COMMUNICATION ROUND.

Dataset Federated learning Proposed

ViT B 16 28.849 ms 11.975 ms

ResNet50 9.333 ms 5.524 ms

TABLE II
DATA TRANSMITTED PER COMMUNICATION ROUND PER IMAGE.

Dataset Federated learning Proposed

ViT B 16 660.459 Mb 0.0029 Mb

ResNet50 179.914 Mb 0.0029 Mb

It is important to note that it is not unusual for the validation
accuracy to begin its initial saturation at 0.7. Since the dataset
contains 100 classes, this problem is much more challenging
than a dataset with 10 classes. For practical use, one may run
the model for more epochs, with better hyper-parameter tuning
and other techniques, such as data augmentation and learning
rate schedulers, to improve accuracy and training times.

We discuss the efficiencies of using the proposed transfer
learning-based fine-tuning approach to adapting the model to
previously unseen private, local data.

1) Reduction in compute on the UAV: TableI shows
the time taken per communication round, and it can
be seen that the proposed model reduces the compu-
tational burden on the UAVs. Since we do not perform
backpropagation over the entire model graph, we can
use an optimizer such as Adam, with roughly 66%
fewer FLOPS, resulting in up to 2.5x time reduction
for the same amount of data. However, since we are
only inferring the model, we may use other optimization
techniques such as quantization, model pruning, and
knowledge distillation. These may likely make the model
more runtime efficient.

2) Reduction in data to be transmitted: TableII shows
the data transmitted per communication round per image,
and it can be seen that the proposed model drastically
reduces the communication burden on the UAVs. Since
we only transmit computed feature vectors and labels
to the GFC, the proposed model significantly reduces
the communication overhead. This method changes the
way we communicate in the UAV swarm and the amount
of data transmitted. This makes our system low latency,
efficient, and uses much lower power.

While the proposed model increases the burden on the GFC,
it reduces the burden on the UAVs, making the system more
feasible in realistic scenarios.

IV. CONCLUSION

In this work, we have proposed a novel mechanism for
federated transfer learning in UAV swarms for efficient data
transmission. The results clearly demonstrate the efficacy of
the proposed system. The proposed method is particularly
useful when large models are readily available, and when we
must rapidly adapt to the local data conditions. The proposed
method uses Kilobyte scale transmission, therefore, we do not
require advanced or sophisticated transmission equipment or a
high power supply in UAVs. This work can further be extended
to other problems in machine learning, such as object detection
and image segmentation.
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